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It has been recently shown �I. Fouxon et al., Phys. Rev. E 75, 050301�R� �2007�; I. Fouxon et al., Phys.
Fluids 19, 093303 �2007�� that, in the framework of ideal granular hydrodynamics �IGHD�, an initially smooth
hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that
exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost
constant. We report molecular dynamics �MD� simulations of a freely cooling gas of nearly elastically colliding
hard disks, aimed at identifying the “attempted” density blowup regime. The initial conditions of the simulated
flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We
measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal
theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving
the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic
fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the
mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by
accounting separately for the gradient-dependent transport and for finite density corrections.
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I. INTRODUCTION

Spontaneous clustering of particles in granular gases has
attracted much recent interest �1–12�. As other pattern-
forming instabilities, the clustering instability of a freely
cooling granular gas has served as a sensitive probe of the-
oretical modeling and, first of all, of Navier-Stokes granular
hydrodynamics �GHD�. Although the formal criteria of its
validity may be quite restrictive �see below�, GHD has great
power, sometimes far beyond its formal validity limits �13�,
in predicting a host of collective phenomena in granular
flows, such as shocks, vortices, and clusters. In recent years,
GHD has been applied to a variety of nonstationary dilute
granular flows �10,14–18�. Nonstationary flows are both ap-
pealing and challenging for continuum modeling of granular
dynamics. As in other areas of continuum modeling, this is
especially true when a nonstationary flow develops a finite-
time singularitiy �19�. Examples are provided by the finite-
time blowup of the gas density: at zero gravity �10,16,17� �as
described by ideal GHD �IGHD�, discussed below� and at
finite gravity �15� as described by the more complete, non-
ideal GHD. Of course, a density blowup in a gas with finite-
size particles can only be an intermediate asymptotics, as the
blowup is ultimately arrested: either by close-packing effects
�11� or by the gradient-dependent transport �18�. Still, the
attempted blowup regimes, signaling the development of
high-density regions in the gas, are fascinating and worth a
detailed investigation. One such regime has been recently
addressed by Fouxon et al. �16,17�. They dealt with a mac-
roscopically one-dimensional, freely cooling, dilute granular
flow in the framework of ideal GHD that neglects the
gradient-dependent transport effects: the heat diffusion and
viscosity. Fouxon et al. derived a class of exact solutions to
the ideal equations, for which an initially smooth flow devel-
ops a finite-time density blowup. Close to the blowup time �,

the maximum gas density exhibits a power law behavior
���− t�−2. The velocity gradient blows up as �−��− t�−1,
whereas the velocity itself remains continuous and forms a
cusp, rather than a shock discontinuity, at the singularity. The
gas temperature vanishes at the singularity, but the pressure
remains finite and almost constant. Extensive numerical
simulations with the ideal hydrodynamic equations showed
that the singularity, exhibited by the exact solutions, is uni-
versal, as it develops for quite general initial conditions
�16,17�. The reason behind this universality is in the fact that
the sound travel time through the region of the developing
singularity is much shorter than the characteristic inelastic
cooling time of the gas in that region. As a result, the pres-
sure gradient �almost� vanishes in the singularity region, and
the local features of this isobaric singularity become essen-
tially independent of how the flow was initiated and how it
behaves at large distances from the singularity. This singu-
larity is of the same type as the one that develops, in the
framework of the IGHD equations, in a general low-Mach-
number flow of a freely cooling granular gas �18�.

Here we perform molecular dynamics �MD� simulations
of a freely cooling gas of nearly elastically colliding hard
disks, aimed at identifying the “attempted� density blowup
regime, predicted by the ideal analytical solutions �16,17�.
We simulate a freely evolving dilute gas of nearly elastically
colliding hard disks in a narrow channel with perfectly elas-
tic sidewalls. In this geometry both the clustering mode in
the transverse directions and the shear mode are suppressed
�see Refs. �2,3,10,11� for detailed criteria�. As a result, the
coarse-grained, or hydrodynamic, flow depends only on the
longitudinal coordinate along the channel �and time�, as was
assumed in Refs. �16,17�. We choose the initial conditions of
the MD simulations so that the coarse-grained density, veloc-
ity, and temperature fields are those producing one of the
exact blowup solutions of the ideal GHD equations. Then we
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follow the time history of the hydrodynamic fields in the MD
simulations and compare it with that predicted by the ideal
exact solution and with numerical solutions of nonideal
GHD equations.

The remainder of this paper is organized as follows. In
Sec. II we briefly summarize the ideal GHD analysis �16,17�
of the density blowup: we present the ideal GHD equations,
one of their exact solutions, its main features, and expected
limits of its validity. In Sec. III we describe our MD simula-
tions and compare the hydrodynamic quantities, computed
from the simulations, with the exact solution of the ideal
GHD equations. We find that the exact solution is in remark-
able quantitative agreement with the MD simulations over an
extended time interval, proving the existence of the at-
tempted density blowup regime. As the attempted singularity
is approached, the hydrodynamic fields, as observed in the
MD simulations, deviate from the predictions of the exact
solution. To investigate the mechanism of breakdown of the
ideal solution, we extend the hydrodynamic theory, in Sec.
IV, in two separate ways. In the first one we take into account
the gradient-dependent transport—the heat diffusion and
viscosity—but continue to assume that the gas is dilute. In
the second one we neglect the gradient-dependent transport,
but take into account, in a semiphenomenological way,
finite-density corrections. Section V summarizes our results
and puts them into a more general context of hydrodynamic
scenarios of clustering in freely evolving granular gases.

II. HYDRODYNAMIC THEORY AND DENSITY
BLOWUP

A. Ideal granular hydrodynamics and exact solution

We consider a two-dimensional granular gas of identical
hard and smooth disks with diameter � and mass set to unity
and adopt a simple model where the inelastic particle colli-
sions are characterized by a constant coefficient of normal
restitution r. Throughout this paper we will only deal with
nearly elastic collisions,

1 − r � 1, �1�

and assume a very small Knudsen number:

lfree/L � 1. �2�

Here lfree is the mean free path of the particles and L is the
characteristic length scale of the hydrodynamic fields that
may depend on time. In addition, we will assume in this
section that the local gas density � is much smaller than the
close-packing density of disks, �c=2 / ��3�2�:

��2 � 1. �3�

The strong inequalities �2� and �3� need to be verified a pos-
teriori, once the hydrodynamic problem in question is
solved. The strong inequalities �1�–�3� enable one to employ
the well-established equations of Navier-Stokes granular hy-
drodynamics �see, e.g., Refs. �13,20�� that deal with three
coarse-grained fields: the mass density ��x , t�, the mean flow
velocity v�x , t�, and the granular temperature T�x , t�. In a
sufficiently narrow channel these fields depend only on the

longitudinal coordinate x, and the hydrodynamic equations
become
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where �=���1−r2��, �0= �2����−1, and �0=2 / ����� �see,
e.g., Refs. �6,20��. Equations �4�–�6� differ from the hydro-
dynamic equations for a gas of elastically colliding disks
only by the presence in Eq. �6� of the inelastic loss rate term
−��T3/2, which describes the proportionality of the energy
loss per particle to the number of particle collisions per unit
time �proportional to �T1/2� and to the energy loss per colli-
sion �proportional to T�. This additional term, however,
brings a whole new physics �and mathematics� into the prob-
lem.

Let us rewrite Eqs. �4�–�6� in dimensionless variables. We
will measure the gas density, temperature, and velocity in
units of �0, T0 /2, and �T0 /2, respectively, where �0 and T0
are some characteristic values of the initial density and tem-
perature. The time and distance will be measured in units of

� =
4

��0
�T0

and l = ��T0

2
, �7�

respectively. As one can see from Eq. �6�, � is the character-
istic cooling time of the gas due to the collisional energy
loss, while l is the characteristic distance a sound wave trav-
els during time �. The numerical factors in Eqs. �7� are cho-
sen for convenience. We will keep identical notation for the
rescaled and physical quantities and take care that no confu-
sion arises. Using the rescaled quantities, we rewrite Eqs.
�4�–�6� as
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. �10�

Let us assume that the characteristic magnitudes of the res-
caled hydrodynamic fields, and of their spatial and temporal
derivatives, are of order unity �this assumption needs to be
checked a posteriori�. Then we can neglect the viscous and
thermal conduction terms, as they scale as 1−r2�1, and
arrive at the IGHD equations
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These equations were investigated in Refs. �16,17�, where a
family of exact analytic solutions was derived. Here we will
consider a representative and simple particular solution that
evolves from the following initial conditions:

��x,t = 0� = cosh−1 x, T�x,t = 0� = 2, �13�

v�x,t = 0� = − 2 arcsin�tanh x� . �14�

To remind the reader, we are using rescaled variables here.
Back to the physical variables, the initial profiles are

��x,0� =
�0

cosh�x/l�
, �15�

T�x,0� = T0, �16�

v�x,0� = − �2T0 arcsin	tanh� x

l
�
 , �17�

where l is defined in Eq. �7�. That is, at t=0 the density
profile has a maximum �0 and width l, the temperature T0 is
uniform, and there is an inflow of the gas towards the origin
with v�x→ �	 , t=0�= 
��T0 /2. The initial scale of
variation of the fields, l, is by a factor 1 / �1−r2� greater than
the mean free path of the gas, justifying the use of the hy-
drodynamic description. Furthermore, both the magnitudes
and the spatial scales of the rescaled fields are of order unity,
which justifies, at least for finite times, the use of the ideal
equations �11� and �12�. Figure 1 shows the initial density
and velocity fields of the flow in the Eulerian coordinate.

Now we go over from the Eulerian coordinate x to the
Lagrangian mass coordinate m=�0

x��x� ,0�dx� �see, e.g., Ref.
�21��. For the initial density profile �13�, the Eulerian coor-
dinate x is related to the Lagrangian coordinate m as follows:

x�m,t = 0� =
1

2
ln�1 + sin m

1 − sin m
� . �18�

Note that the infinite Eulerian interval −	�x� +	 corre-
sponds, in this example, to a finite interval of m: −� /2�m
�� /2—that is, to a finite �rescaled� total mass of the gas,
equal to �. In the Lagrangian coordinates, the ideal equations
�11� and �12� are

�

�t
�1

�
� =

�v
�m

,
�v
�t

= −
�p

�m
, �19�

�p

�t
= − 2p�

�v
�m

− 2�2p3/2�1/2, �20�

where the dilute gas pressure p=�T has been used instead of
the temperature. The exact solution in the Lagrangian coor-
dinates is as follows �16,17�:

��m,t� =
cos m

�1 − t cos m�2 , p�m,t� = 2 cos m , �21�

v�m,t� = − 2m + 2t sin m . �22�

As x�m , t� can be calculated explicitly �17�,

x�m,t� =
1

2
ln�1 + sin m

1 − sin m
� − 2tm + t2 sin m , �23�

Eqs. �21�–�23� describe the time history of the hydrodynamic
fields in the x coordinate in a closed parametric form. Let us
consider some important features of this simple exact solu-
tion.

B. Density blowup and its properties

A momentary look at the first equation of Eqs. �21� re-
veals that the density at the origin blows up in a finite time.
Back to the dimensional variables one obtains

��x = 0,t� =
�0

�1 − t/��2 . �24�

The gas temperature becomes zero at the singularity, and the
velocity gradient �v�x , t� /�x blows up as �−��− t�−1,
whereas the velocity itself remains continuous and forms a
cusp. This behavior at the singularity is quite different from
that of the free-flow singularity �which one observes for the
same initial velocity profile, but a zero gas pressure�. In par-
ticular, for the free-flow singularity the density blows up as
�1− t /��−1, while the velocity develops a shock discontinuity
�22�. See Refs. �16,17� for more differences between the two
types of singularities.

It was found in Refs. �16,17� that the finite-time blowup
of the gas density and of the velocity gradient is not a con-
sequence of specially chosen initial conditions. Rather, it ap-
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FIG. 1. The initial values of the hydrodynamic fields in the
example of attempted density blowup considered in this work.
Shown are the rescaled initial density and velocity of the gas �see
Eqs. �15� and �17�� versus the rescaled Eulerian coordinate x / l
along the channel. Only the right half of the system is shown. The
values of �0, T0, and l, used in our molecular dynamic simulations,
are presented in the beginning of Sec. III D.
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pears, in the framework of the ideal equations �11� and �12�
�or, equivalently, of Eqs. �19� and �20��, for quite general
initial conditions. A robust local feature of this singularity is
a finite, nonzero value of the gas pressure at the time of the
density blowup. The singularity is universal because the
sound travel time through it is much shorter than the charac-
teristic inelastic cooling time of the gas. As a result, the
pressure gradient �almost� vanishes in the singularity region
and the local features of this isobaric singularity become in-
dependent of the flow details at large distances.

As an infinite density cannot be reached in a gas with
finite-size particles, it is clear that, sufficiently close to the
attempted singularity, some of the assumptions made on the
way to the ideal equations �11� and �12� break down. How-
ever, independently of the precise way of regularizing the
infinite density, an attempted singularity implies the forma-
tion of a region with a very high density. Furthermore, the
ideal solution should accurately describe the evolution of the
system for times not too close to the attempted density
blowup time �. Before we look into where the ideal theory
breaks down, let us consider some global characteristics of
the exact solution. For these the singularity time t=� turns
out not to be special. First, we note that the solution de-
scribes a gas with a �constant� finite number N of particles,
given by

N = Ly�
−	

	

��x�dx = ��0Lyl =
2�2�Ly

�1 − r2��
, �25�

where Ly is the channel width. Note that N is independent of
�0: for larger �0 the initial density profile has a higher peak,
but a smaller width, so that N remains constant. Another
global characteristics of the solution is the total energy of the
gas:

E�t� = Ly�
−	

	 ��v2

2
+ �T�dx .

For the thermal part of the energy we find, after a simple
algebra,

Eth�t�
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= �
−	
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0
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2
� t
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 . �26�

Similarly, for the kinetic energy of the macroscopic motion
we find

Ekin�t�
Ly

= �0T0l	�3

12
− 4� t

�
� +

�

2
� t

�
�2
 . �27�

Summing the two and using Eq. �25�, we obtain �17�

E�t� = NT0	1 +
�2

12
−

8

�
� t

�
� + � t

�
�2
 . �28�

As time increases, E�t� is monotone decreasing for t��. We
also observe that t=� is a regular point of E�t�, where noth-
ing dramatic happens. Note that the parabolic-in-time law of
the energy decay is quite different from Haff’s law E�t�
=E�0� / �1+2t /��2 obtained for freely cooling homogeneous
granular gas with density �0 �23�.

C. Breakdown of the ideal theory

For a one-dimensional flow, the applicability of the solu-
tion �21�–�23� is determined by the applicability of the ideal
equations �11� and �12�, which it solves exactly. The analysis
in Ref. �17� shows that, sufficiently close to the attempted
singularity, the ideal equations become invalid. This happens
because of one of two reasons �or both�: either the gas be-
comes dense, so that criterion �3� breaks down, or the heat
diffusion becomes important, invalidating the ideal equations
�11� and �12�. The time tbr at which the ideal theory breaks
down can be estimated as follows �17�:

1 −
tbr

�
� max���0�2,1 − r� . �29�

Therefore, the “bottleneck” for the validity of the equations
is set by the initial conditions: if the maximum is determined
by the first �correspondingly, the second� term on the right-
hand side of Eq. �29�, the ideal equations become invalid
because of the finite gas density �correspondingly, the finite
heat diffusion�. As each of the two terms is very small by
assumption, the solution is expected to break down only
close to the attempted singularity �24�.

The one-dimensional solution may also become invalid
because of instability with respect to small initial perturba-
tions that are inevitably present in MD simulations. Numeri-
cal solutions of the hydrodynamic equations, reported in
Refs. �16,17�, strongly suggest that the ideal solution is
stable with respect to small longitudinal perturbations. This
does not exclude possible instability with respect to small
transverse perturbations. The only available analytic result
here is the one obtained from the stability condition for a
homogeneous cooling state �see Refs. �2,3,10,11��. That sta-
bility criterion comes from a competition between the �de-
stabilizing� inelastic cooling and the �stabilizing� heat diffu-
sion and viscosity in the transverse direction. The stability
criterion demands that Ly be less than a threshold value de-
pending on 1−r, �0, and �. The stability problem for the
strongly inhomogeneous and time-dependent exact solution
is obviously more complicated, and its complete analytic so-
lution does not seem feasible. It is therefore important that
our MD simulations, presented in the next section, strongly
suggest that, for sufficiently narrow channels, no instability
in the transverse direction occurs for the time-dependent
flow we are working with.

Let us summarize the main theoretical predictions. For the
initial conditions �13� and �14�, a nonlinear time-dependent
flow sets in, described by the ideal exact solution: Eqs.
�21�–�23�. This flow “attempts” to develop a density blowup.
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However, close to the attempted singularity one �or both� of
the two factors—the finite density and the heat diffusion—
invalidates the solution. The relative importance of the two
factors is determined, via Eq. �29�, by the initial conditions.

III. MOLECULAR DYNAMICS SIMULATIONS

A. General

To test the theoretical predictions, we performed MD
simulations of a freely cooling granular gas in a narrow two-
dimensional channel. The initial conditions correspond to hy-
drodynamic profiles �13� and �14� and satisfy the strong in-
equalities �1�–�3�. According to the theory, they are expected
to generate the nonlinear time-dependent flow described by
Eqs. �21�–�23�. Our MD simulation calculates the evolution
of a gas of N� identical inelastic hard disks of unit mass, with
diameter �, in a channel of dimensions Lx�=Lx /2 and Ly. As
the expected hydrodynamic flow is symmetric with respect
to x=0, only one-half of the system, x� �0,Lx /2�, is simu-
lated, so N�=N /2. Each wall of �the one-half of� the channel
is solid and reflects elastically the disks colliding with it. The
particles move freely until a collision �“event”� occurs when
two disks i and j find themselves at a distance equal to �.
The collision is resolved instantaneously, leaving the posi-
tions of the particles unaltered and updating their velocities
from �vi ,v j�, before the collision, to �vi� ,v j��, after the colli-
sion. The update rule conserves the total momentum and
reduces the total kinetic energy, with a constant coefficient of
normal restitution r� �0,1�:

vi� = vi −
1 + r

2
�g · �̂��̂ , �30�

v j� = v j +
1 + r

2
�g · �̂��̂ , �31�

where g=vi−v j and �̂ is the unit vector joining the centers of
the two disks. The hard-core interactions make possible the
following optimization of the algorithm. It is sufficient to
calculate the first collision times of all particles and then
select the absolute first one. The system is freely evolved up
to that time; then, the collision is resolved and a new list of
collision times is computed. With standard optimization
techniques of the search procedure it is possible to achieve
fast computation times �25�. Nevertheless, the time perfor-
mance is proportional to the number of collisions occurred,
so the ratio between the physical time and the CPU time goes
down when dense clusters emerge in the system.

B. Initial conditions

The initial position and velocity of each of the N� disks
are chosen randomly with probability distributions corre-
sponding to the desired initial hydrodynamic fields. This was
implemented with the following procedure. For each disk i,
the following holds true.

�1� The longitudinal position xi is chosen with probability
proportional to ��x ,0� from Eq. �15� for x0 using an
acceptance-rejection method.

�a� A random xi position is generated with uniform prob-
ability on the interval �� /2,Lx�−� /2�.

�b� A random number z with uniform probability on
�0,max��x ,0��� is compared with ��xi ,0�.

�c� If z���xi ,0�, the position is accepted; otherwise, the
procedure is repeated from �1a�.

�2� Then the vertical position yi is chosen with uniform
probability on the interval �� /2,Ly −� /2�.

�3� A nonoverlap check is performed: the distance be-
tween the disk center �xi ,yi� and all the previously placed
disk centers must be greater than �: if the condition is not
satisfied, the procedure is repeated from �1a�.

�4� The velocity components vi
x and vi

y are chosen from a
Gaussian distribution with zero mean and variance equal to
T0; then, the longitudinal component is shifted by an amount
v�x ,0� from Eq. �17� with x0.

C. Lagrangian coordinate and hydrodynamic fields

We verified that, for our choice of the channel dimen-
sions, the gas remained homogeneous in the y direction. By
virtue of this observation, it was sufficient to deal with one-
dimensional hydrodynamic profiles depending on x. For a
direct comparison with the analytical solution of the IGHD
equations, the hydrodynamic profiles were obtained using a
uniform binning in the Lagrangian mass coordinate. Using
the same notation as in Sec. I, we define the Lagrangian mass
interval for the simulated flow as �0,� /2�, where � /2 cor-
responds to �one-half of� the total gas mass, N�=N /2. Let
nbin be the number of bins chosen to sample the hydrody-
namic profiles and Nbin=N� /nbin be the average number of
particles per bin. At a given time t all particles are ordered so
that xi�xi+1, i� �0,N�−1�. Then each bin j� �1,nbin� has its
leftmost border at x��j−1�Nbin� and its rightmost border at
x�jNbin−1�. These bins are nonuniform in the x coordinate, but
are uniform in the Lagrangian mass coordinate as each con-
tains the same mass Nbin. The position of the jth bin is

mj =
��j − 1/2�

2nbin
.

All particles belonging to the jth bin contribute to the value
of the hydrodynamic fields:

��mj,t� =
Nbin

LyLj
, �32�

v�mj,t� =

�
i�j

vi
x

Nbin
, �33�

T�mj,t� =

�
i�j

��vi
x�2 + �vi

y�2�

2Nbin
− v2�mj,t� , �34�

where we have used the shorthand notation i� j to denote
particles in the jth bin, and Lj to denote the length of the jth
bin. The pressure field p�mj , t�=��mj , t�T�mj , t� is obtained
straightforwardly.
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The hydrodynamic fields, computed for individual real-
izations, exhibit a significant noise. To get rid of the noise,
all hydrodynamic profiles presented in the next section were
obtained after an averaging over 100 MD simulations with
different initial conditions, corresponding to the same initial
hydrodynamic fields and obtained with the procedure de-
scribed in Sec. III B.

D. MD simulations versus ideal solution

The following parameters were chosen for the simula-
tions: �=1, �0=10−4, T0=1, N�=5�104, and Ly =125. For
convenience, the coefficient of normal restitution r was cho-
sen so that 1−r2=�� /2�10−2—i.e., r=0.993 713 67. . ..
This choice of parameters sets l�1.273 24�106, Lx�=10l,
and ��1.8006�106. The evolution of the density field, as
obtained in the simulations and as predicted by the ideal
theory, is displayed in Fig. 2 for times up to t=0.8� and in
Fig. 3, for later times, up to time t=1.055�. The figures show
that the ideal solution is in remarkable agreement with the
MD simulations up to times t�0.9�. At later times, when the
density peak exceeds �10−2, the ideal solution starts to de-
viate from the MD simulation in the neighborhood of m=0.
The actual density peak continues to grow, but slower than
predicted by the ideal solution. At time t=�, when the ideal
solution predicts the density blowup in x=0, the actual den-
sity ��0,���0.2. The close-packing density �c=2 / ��3�2� is
reached at t�1.05� �see the last frame of Fig. 3�. Sufficiently
far from m=0, the ideal solution remains very accurate. �We
checked that this statement remains true even beyond the
attempted singularity time: until the end of the MD simula-
tions.�

The gas velocity profiles, shown in Figs. 4 and 5 in a
linear and logarithmic scale, respectively, are very accurately
predicted by the ideal solution, Eq. �21�, until late times.
Surprisingly, the excellent agreement remains even at times
greater than 0.9�, when the density peak already significantly

deviates from the theoretical one. To be able to see the small
deviations from the theory, we had to use, in Fig. 5, a loga-
rithmic scale.

Similarly, an inspection of the pressure profiles �see Fig.
6� shows an excellent agreement with the prediction of the
ideal theory, p�m , t�=�0T0 cos�m� �see the second of Eqs.
�22��. Discrepancies of about 2% appear only at late times,
when the density is already about one-half of the theoreti-
cally predicted value. At times close to �, the pressure field,
as found in the MD simulations, develops a dip close to x
=m=0, reaching a value about 15% lower than the theoreti-
cally expected value p�0�=10−4.

A direct characterization of the attempted gas density
blowup is provided by the time history of the density at x
=0. The ideal solution predicts �see Eq. �24�� that
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1 −� �0

��0,t�
=

t

�
. �35�

This prediction is extremely well supported by the MD simu-
lations in Fig. 7, until t�0.9�. The subsequent deviation
from the theory appears as saturation of the quantity 1
−��0 /��0, t� at the value 1−��0 /�c corresponding to the
close-packing density �c. The same Fig. 7 also depicts a dif-
ferent quantity 1−�T�0, t�. In view of the theoretical expec-
tation p�0, t�=�0T0=�0, this quantity is also expected to
grow as t /�, and Fig. 7 indeed shows this growth until t
�0.9�. The quantity 1−�T�0, t� also saturates at later times,
but at a value slightly different from 1−��0 /�c �see the inset
of Fig. 7�. This is consistent with the pressure deviation from
�0 at very late times.

We also present, in Fig. 8, the time history of the total
energy per particle,

E�t�
N�

=
1

N�
�
i=1

N� �v�2

2
, �36�

as found in the MD simulations, and compare it with the
theoretical prediction, Eq. �28�. Here the agreement is very
good at all times, with a 3% error at late times. The �numeri-
cal� time derivative of E�t�, depicted in the inset of Fig. 8,
remains smooth also close to the singularity time �. Actually,
this is not surprising, as the main contribution to the thermal
energy of the gas is made by the peripheral gas �in the La-
grangian frame�, which is hotter and more dilute than the gas
in the region close to m=0. Furthermore, the main contribu-
tion to the kinetic energy of macroscopic motion is again
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made by the peripheral gas �in the Lagrangian frame� which
moves faster than the gas in the region close to m=0. The
peripheral gas continues to follow the ideal theory at all
simulation times, and this explains the remarkable success of
the ideal solution in predicting the total energy history.

To conclude this section, the MD simulations clearly
show, over an extended period of time, the existence of the
“attempted” density blowup regime. Ideal granular hydrody-
namics predicts very accurately the hydrodynamic profiles,
observed in the MD simulations, up to times close to the
attempted singularity. The density field, as measured in the
MD simulations, starts to deviate from the ideal theory at
time t�0.9�. Somewhat surprisingly, the rest of the hydro-
dynamic fields continue to show good agreement with the
theory until even closer to the attempted singularity time �.
In the following section we will see that the agreement with
theory at later times improves significantly when the non-
ideal hydrodynamic equations �8�–�10�, which account for
the gradient-dependent transport, are employed.

IV. NONIDEAL HYDRODYNAMICS

To investigate the mechanism of breakdown of the ideal
theory, we extended the hydrodynamic theory in two sepa-
rate ways. In the first one we took into account the gradient-
dependent transport—the heat diffusion and viscosity—but
continued to assume that the gas is dilute. In the second one
we neglected the gradient-dependent transport, but took into
account finite-density corrections. The hydrodynamic equa-
tions were solved numerically in Lagrangian coordinates us-
ing an accurate variable-mesh and variable-time step solver
�26�.

First, we solved �the Lagrangian form of� Eqs. �8�–�10� of
nonideal granular hydrodynamics �NIGHD�. These equations
account for the viscous and heat diffusion terms, but still
assume a dilute gas.

The numerically obtained NIGHD profiles are presented,
together with the MD simulations and the ideal analytical
solution, in Figs. 2–7. As expected, the NIGHD profiles co-
incide with the MD simulations and with the ideal theory for
early and intermediate times. At late times, the gradient-

dependent transport terms become significant and the
NIGHD profiles approximate the MD simulation results
much better than the ideal theory. As the maximum density
continues to increase �and finally approaches the close pack-
ing density �c�, the dilute NIGHD description ultimately
breaks down. In Fig. 3 it occurs at about t /��0.98.

In the second type of hydrodynamic computations we dis-
carded the viscous and heat diffusion terms, but took into
account �moderate� finite-density effects. This was done by
adopting, in Eqs. �19� and �20�, instead of the ideal equation
of state and ideal energy loss rate, the Carnahan-Starling
equation of state �27� and a modification of the energy loss
rate, derived by Jenkins and Richman �28� in the spirit of
Enskog theory:

p → �T	1 +
��

�3
g���
 ,

� → �g��� , �37�

where

g��� =

1 −
7��

32�3

�1 −
��

2�3
�2

is the equilibrium pair correlation function of hard disks at
contact. In the dilute limit �→0 one obtains g=1 and recov-
ers the ideal equation of state p=�T.

In Fig. 9 we compare four different results for the gas
density: the MD simulations, the ideal analytical solution,
the numerical solution of the first type �the NIGHD equa-
tions�, and the numerical solution of the second type. It is
clearly seen that, for the choice of parameters used in our
MD simulations, the numerical solution of the second type is
not as successful as that of the first type. This could be ex-
pected, as for the times when the maximum density is still
much smaller than the close packing density, the finite-
density corrections �which are of the order of � /�c� are still
negligible. In contrast, the numerical results from the
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NIGHD equations agree well with the MD simulations and
show that, as the attempted density blowup is approached,
the heat conduction and viscosity effects can become impor-
tant when the gas density is still small.

V. SUMMARY AND DISCUSSION

Our MD simulations proved the existence of an attempted
density blowup regime as described by an exact solution of
the ideal granular hydrodynamic equations. We found the
ideal solution to be in remarkable quantitative agreement
with the MD simulations over an extended time interval, but
not too close to the attempted singularity. As the attempted
singularity is approached, the exact solution breaks down. A
more complete hydrodynamic theory, which accounts for the
heat diffusion and viscosity, but still assumes a dilute gas,
continues to agree with the MD simulations until the gas
density becomes a fraction of the close-packing density of
disks.

Let us put the results of this work into a more general
context of clustering instability of a freely cooling granular
flow. As we have already noted, the local properties of the
density blowup, exhibited by the exact solutions of the
IGHD equations, are the same as the local properties of the
density blowup exhibited by a low-Mach-number flow of a
freely cooling granular gas with the heat diffusion neglected
�18�. A low-Mach-number flow emerges when the pressure
balance sets in on a shorter time scale than the temperature
balance. In this case any local inelastic cooling causes a
�low-Mach-number� gas inflow into the colder region so as
to increase the local gas density there and keep the pressure
gradient �almost� zero. The resulting density instability de-
velops on the background of an �almost� homogeneous gas
pressure. This is consistent with the MD simulations pre-
sented here �see Fig. 6�, where the pressure in the vicinity of
the density maximum hardly changes up to times very close
to the attempted singularity time. For brevity we will call the
low-Mach-number flow instability scenario 1. Scenario 1
first appeared in astrophysics and plasma physics in the con-
text of condensation instabilities in gases and plasmas that
cool by their own radiation �29�.

As many as four additional hydrodynamic scenarios of
clustering in a freely cooling granular gas have been dis-
cussed in the literature. We start with the pressure instability
scenario, or scenario 2. It was discussed, in the context of the
granular clustering, by Goldhirsch and Zanetti �2�, although
it was also known earlier to the astrophysics and plasma
physics communities �see Ref. �29� for a review�. Scenario 2
is usually presented in the following way. Let us consider a
small local increase in the gas density. This increase causes
an increase in the collisional energy loss. As a result, the gas
pressure falls down, a gas inflow develops, causing a further
density increase, and the process continues. Importantly, sce-
nario 2 assumes that the inelastic cooling time is much
shorter than the sound travel time. In other words, it is the
local temperature balance that sets in rapidly here and the
resulting pressure gradient drives the flow on a relatively
slow time scale.

As of present, there has been no detailed nonlinear analy-
sis behind scenario 2. The �well-established� linear stability

theory of the homogeneous cooling state �3,5� indicates that
scenarios 1 and 2 operate in two opposite limits: for suffi-
ciently short and long perturbation wavelengths, respectively.
The physics behind this is the following. The characteristic
cooling time due to the inelastic collisions is independent of
the length scale of the initial perturbation, whereas the sound
travel time scale is proportional to it. As a result, when all
other parameters are fixed, scenario 1 corresponds to an
intermediate-wavelength limit of the clustering instability,
while scenario 2 corresponds to the long-wavelength limit.
�In the short-wavelength limit the homogeneous cooling state
of the gas is stable, as the clustering instability is suppressed
by the heat diffusion �3,18�.�

Now let us consider scenario 3 that also assumes a long-
wavelength limit. As the gas temperature falls down rapidly
because of the inelastic cooling, the flow is describable by
the zero pressure �or flow by inertia� approximation �10�.
Were it not regularized by close-packing effects, such a flow
would develop a finite-time density blowup �of a different
type than the low-Mach-number flow� �10,22�. If the com-
pressional heating interferes earlier than the close-packing
effects, the pressure becomes relevant again, and scenario 3
gives way to scenario 1 �16�. In the opposite case the late-
time dynamics of the system is describable by the Burgers
equation �11�. Which of the two regimes is realized in a
particular setting depends on the initial conditions.

Scenarios 1–3 do not invoke the shear mode instability,
and so they can operate both in one-dimensional, and multi-
dimensional settings. On the contrary, scenarios 4 and 5 do
invoke the shear mode, and so they are intrinsically multidi-
mensional �and intrinsically nonlinear�. Scenario 4 exploits
the fact that the unstable shear mode may contribute, via a
nonlinear coupling, to the growth of the clustering mode.
Obviously, the nonlinear coupling is the only hydrodynamic
mechanism of driving the clustering mode if the system size
is larger than the critical size for the shear mode instability,
but smaller than the critical size for the clustering mode in-
stability. Furthermore, numerical analysis, performed in Ref.
�6�, indicated that the nonlinear coupling plays a dominant
role in the initial density growth also in the case when the
system size is comparable to the critical system sizes for the
clustering and shear instabilities. �More precisely, the wave
number of the monochromatic test perturbation of the trans-
verse velocity in Ref. �6� was within the instability regions of
both the shear and the clustering modes. However, twice the
wave number already came out of the instability region.�
What happens in much larger systems is presently under in-
vestigation. It turns out that well above the clustering mode
instability threshold the nonlinear coupling with the shear
mode does not dominate the density growth �although it does
make the theory more cumbersome�. In the channel geom-
etry, which we adopted in this paper and in previous works
�10,11,16–18�, the shear mode is suppressed and the cluster-
ing instability develops in its pure and simplest form.

Now we proceed to scenario 5 �2�, which exploits the fact
that the unstable shear mode heats the gas in some regions.
Scenario 5 assumes that this heating can be balanced by the
inelastic energy loss, rendering �quite a complicated� steady
state. It is furthermore assumed that this steady state is un-
stable with respect to small perturbations, and it is this insta-
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bility that causes the granular clustering. We are unaware of
a quantitative theory that would support scenario 5, or of any
quantitative test of scenario 5 in MD simulations or in nu-
merical solutions of hydrodynamic equations.

To complete the comparison of the five hydrodynamic
scenarios of clustering we note that the only scenarios that
have addressed, up to date, a strongly nonlinear stage of the
clustering process quantitatively are the low-Mach-number
flow instability scenario �scenario 1� �18� and the zero pres-
sure scenario �scenario 3� �10,11�. It is the consideration of a
strongly nonlinear stage that enables one to identify at-
tempted finite-time density blowups: prototypes of the dense
granular clusters.

Which results of this work will withstand a generalization
to more realistic granular flow conditions: for example, rota-
tional degrees of freedom and tangential inelasticity of col-
lisions? Including the rotational degrees of freedom and tan-
gential inelasticity of collisions in a hydrodynamic
description is possible under some limitations �13,20�. Solv-
ing the corresponding nonlinear hydrodynamic equations
analytically will of course be beyond our reach. It is likely
that, when the gradient-dependent transport is negligible,
these nonlinear equations will again exhibit a finite-time den-

sity blowup. Indeed, the development of closely packed
granular clusters in a granular flow is a robust phenomenon.
Therefore, it is natural to conjecture, based on results of this
work, that more realistic granular clusters �those emerging
when the rotational degrees of freedom are taken into ac-
count� will still be describable as regularized attempted den-
sity blowups.

In summary, the results of the present work give support
to the notion of a granular cluster as a regularized density
blowup of ideal granular hydrodynamic equations, put for-
ward in Refs. �10,11,15–18�. In more general terms, they
present additional evidence that granular hydrodynamics is a
powerful and accurate quantitative theory of granular flows,
especially once it is employed within its limits of applicabil-
ity �but luckily, sometimes even beyond them�.
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